Technical Talk: Latest in Completions

Arinta Fadly November 2023 About Myself

- Completions Product Line
- ~16 years at SLB:
 - 10 years in operations/field
 - 3 years teaching core completion
 - 3 years in gas lift marketing
- From Balikpapan, Indonesia
- Education:

Gadjah Mada

Assignments:

NANYANG TECHNOLOGICAL UNIVERSITY

Cased hole vs Open hole

Completions

The design, selection and installation of tubulars, tools and equipment located in the wellbore for the purpose of conveying, pumping or controlling production or injection fluids.

- Safe
- Efficient
- Economical

Artificially Lifted Wells

Artificial Lift

- Because they lack sufficient reservoir pressure to produce fluids to the surface, the majority of the world's oil and gas wells are unable to produce at economic rates without assistance.
- This condition may be the result of pressure depletion over time or be caused by low original reservoir pressure.

Beam pumps/SRP

Sand Control: Why?

Sand Control: Stand Alone Screen and Inflow Control Devices (ICD) Installation of screens as a main barrier for formation sand (no gravel)

- Formation will collapse around the screens and will form a natural filter that would avoid the mobility of the sand
- Common in open hole completions, not recommended for cased hole

Sand Control: Gravel Pack and Frac Pack

Sand Control: Gravel Pack and Frac Pack

Upper Completion

Hydraulic Control Line

Chemical Injection Valve

Upper Completion: Multizone

Intelligent Completion: Electric Flow Control Valve

Intelligent Completion: Electric Flow Control Valve

Deployed in all three laterals of a maximum reservoir contact well.

Intelligent Completion: Permanent Downhole Gauges

	Conventional	New
Pressure (ksi)	10, 16, 25, 30	10, 16, 25
Temperature (deg C)	180	150, 175, 200
MCM Temp Rating	180	200
Metrology	Excellent	Excellent
ESP immunity	No	Full immune
Distance between	1km	No limitation
Multidrop Capability	8 sensors	16 sensors
Systems compatibility	No	Yes
Telemetry	FSK	FDMA

FDMA – Frequency Division Multiple Access

- Gives individual allocation to several frequency bands
- Everyone speaks at once with a different pitch.

Multilateral: Why?

Drivers for multilateral completions

Reservoir

Layered formations / limited size target blocks / Maximum Reservoir Contact wells

- Subsea Minimize subsea wellheads and template size
- Platform Slot recovery
 - Size

Land

Hostile / remote locations Space limitations Environmental Impact

Cost

- Historically, to be economical, the Capex should be no greater than 50% additional for each lateral
- An additional lateral offshore may cost about 30% more than a single well
- An additional lateral on land may cost about 60% more than a single well

Production

Will probably be between 30-60% improvement over a horizontal well, not double Multilateral: TAML (Technology Advancement of Multi-Laterals) TAML LEVEL 1 Open / Unsupported Junction Barefoot main bore & lateral or slotted liner hung off in either bore

 TAML LEVEL 2

 Main Bore Cased & Cemented*, Lateral Open

 Lateral either barefoot or with slotted liner hung

 off in open hole

TAML LEVEL 3 Main Bore Cased & Cemented, Lateral Cased but Not Cemented Lateral liner anchored to main bore but not cemented at the junction

 TAML LEVEL 4

 Main Bore & Lateral Cased & Cemented

 Both bores cemented at the junction

TAML LEVEL 5 Pressure Integrity at the Junction Straddle packers or (integral) mechanical casing seal (may or may not be cemented)

Multilateral: Case Study -Australia

TAML LEVEL 5

Junctions are used with standalone screens in the lateral combined with swell packers and ICDs

Multilateral: Case Study – Norway and Russia

TAML LEVEL 5

- Used on Filanovskoe and Korchagina fields, Sakhalin, Russia and Goliath, Norway
- Controlled comingled production
- Lateral and main bore production control
- SPE 189006, 181927

10-3/4in or 9-5/8in casing

Junction are used with stand alone screens in the lateral combined with Swell packers and ICDs

Electrification

Maximize infrastructure and efficiency with fully electric production systems

- Converting hydraulic systems across drilling and production to electric, digital-ready systems.
- Hydraulic pressure must be generated close to the point of utilization, eventually requiring conversion from electric to hydraulic power (an inefficient transfer of energy).
- The pressure drop along hydraulic control lines limits how quickly energy can be transported over long distances. Here, electric lines have a technical advantage.
- Hydraulic power and control systems (and their actuators) require periodic maintenance and are sensitive to control fluid contamination.

Electrification

